Tucker decomposition-based temporal knowledge graph completion
نویسندگان
چکیده
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the graphs. To enrich existing graphs, recent years witnessed that many algorithms link prediction and embedding designed infer new facts. But most these studies focus on static ignore temporal information which reflects validity knowledge. Developing model completion is increasingly important task. In this paper, we build tensor decomposition inspired by Tucker order-4 tensor. Furthermore, further improve basic performance, provide three kinds methods including cosine similarity, contrastive learning, reconstruction-based incorporate prior into proposed model. Because core contains number parameters model, thus present two regularization schemes avoid over-fitting problem. By combining with our outperforms baselines explicit margin datasets (i.e. ICEWS2014, ICEWS05-15, GDELT).
منابع مشابه
Open-World Knowledge Graph Completion
Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hol...
متن کاملTowards Time-Aware Knowledge Graph Completion
Knowledge graph (KG) completion adds new facts to a KG by making inferences from existing facts. Most existing methods ignore the time information and only learn from time-unknown fact triples. In dynamic environments that evolve over time, it is important and challenging for knowledge graph completion models to take into account the temporal aspects of facts. In this paper, we present a novel ...
متن کاملProjE: Embedding Projection for Knowledge Graph Completion
With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these mode...
متن کاملKnowledge Graph Completion via Complex Tensor Factorization
In statistical relational learning, knowledge graph completion deals with automatically understanding the structure of large knowledge graphs—labeled directed graphs— and predicting missing relationships—labeled edges. State-of-the-art embedding models propose different trade-offs between modeling expressiveness, and time and space complexity. We reconcile both expressiveness and complexity thr...
متن کاملAttentive Path Combination for Knowledge Graph Completion
Knowledge graphs (KGs) are often significantly incomplete, necessitating a demand for KG completion. Path-based relation inference is one of the most important approaches to this task. Traditional methods treat each path between entity pairs as an atomic feature, thus inducing sparsity. Recently, neural network models solve this problem by decomposing a path as the sequence of relations in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge Based Systems
سال: 2022
ISSN: ['1872-7409', '0950-7051']
DOI: https://doi.org/10.1016/j.knosys.2021.107841